USING THE SOLUTION TO THE REVERSE PROBLEM OF HEAT
CONDUCTION IN THE CALCULATION OF THE HEAT TRANSFER
COEFFICIENT FROM TEMPERATURE READINGS INSIDE THE BODY

V. L. Pokhoriler UDC 536.24.01

A method is proposed for determining the heat transfer coefficient from instantaneous tem-
perature values at points inside a plate, a hollow cylinder, or a hollow sphere during heatup.

The coefficient of heat transfer at the surface of a hollow cylinder or a hollow sphere is defined as
follows:
11—k

. ot
Bi (Fo) = 6 —i(L.Fo) dp (1, Fo). (1)

This formula remains the same for a plate, with (1 k) replaced by 1 and variable p replaced by
variable u, In order to determine the value of the Biot number Bi, therefore, it is necessary to know the
temperature and the temperature gradient at the heated surface, i.e., the temperature distribution across
the wall thickness. In some problems related to the determination of the heat transfer coefficient, a tem-
perature measurement is technically very difficult at the heated surface but quite feasible at several in-
ternal points across the thickness. A relation between the temperatures at internal points and the tempera-
ture distribution across the wall (including the heated surface) can be established with the aid of the solu-
tion to the reverse heat conduction problem,

By solving the reverse heat conduction problem according to the method in [1, 2], a one-dimensional
temperature field of bodies with a simple geometiry can be expressed in terms of the temperatures at one
or two points and of their time derivatives, Using this method, one arrives at the following expression
for the temperature field of a plate, a hollow cylinder, or a hollow sphere heated at one surface (u=1,

p = 1) and ideally insulated at the other (u =0, p = k):

t(o, Fo)= > ™ (k, Fo)P, (0); {(u, Fo)= %, £ (u, Fo) P, (u). (2
n=0 n=0
The radial polynomials Pn(p) and Py(u) are determined with the aid of special relations which the
author has derived by methods shown in [1] and put in a form more convenient for engineering calculations:

for a plate "
P, (1) =-2—; (3)
(2n)!
for a hollow sphere
1 2kn k—p\»
P (o) = 1+ ( ; €
0= Ty ( 0 ) —y
for a hollow cylinder
R 0 0
=1 LR I A, [V B
PO =15 Pu0) = o | 2 ]

Ural Division of the ORGRES, Sverdlovsk, Translated from Inzhenerno-Fizicheskii Zhurnal, Vol,
23, No. 5, pp. 879-883, November, 1972, Original article submitted February 8, 1972,

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17tk Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a resrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.

1431



3 ot 5 0 P o? 5
ST AN (o AR R VLR O S (5)
P, (0} 64(k»—1)4{k4 ( 2 ) ETR

Expressions for higher-order radial polynomials Pn(p) for a hollow cylinder were given in {31.

When using expressions (2), one may consider that the values of Py(1) decrease fast with increasing
n, Thus, in the case of a plate Py(1) = 1/2, P,y(1) = 1/24, P4(1) = 1/720. At an insulated surface of a
solid body heated in any practical manner, on the other hand, the successively higher-order time deriva-
tives of the temperature become also smaller in absolute value, All this makes it feasible, for approxi-
mate calculations of Bi(Fo), to break off the infinite sum in formula (2) after a finite number of terms
n =m; in many cases m = 2 or 3 is sufficient,

The practical application of formula (2) is made more difficult by the necessity of calculating the time
derivatives of the temperature at the surface t(n)(k, Fo). Indeed, if the temperature is meagured within
definite time intervals (as is usually done in practice), then determining its higher than first-order deriva-
tives involves large errors, even whenthe most efficient methods of numerical differentiation (e,g,, the
method of least squares) are used,

Differentiations can be avoided if, besides the temperature of the insulated surface, one measures
also the temperatures at internal points in the wall. It follows from expression (2) that the temperature at
an arbitrary point pj can be expressed in terms of the following approximate relation:

t(p,s Fo) = Dt (k, Fo) P, (p,). (6)
n=0
For a fixed number m, the unknown functions t®(k, Fo) withn=1, 2, ., . , m can be determined from
temperature readings at points inside the body, by solving the corresponding system of m algebraic equa-
tions (6), The uniqueness of the solution follows from the linear independence of functions Pp(p).

If the number of temperature readings is less than m, then the missing equations can be made up for
with the values of the first time derivatives of the temperatures which have been read t'(p;, Fo):

m—1
' (o, Fo) = 1™V (k, Fo) Py (p)). (62)
n=0

1t is to be noted that a simultaneous use of expressions (6) and (6a) requires a certain amount of cau-
tion: it is necessary, for instance, to first examine the conditions under which the system of equations is
solvable, An analysis has shown that in several cases (at definite ratios between coordinates p; of the tem-
perature test points) such a system may be either inconsistent or not fully determinate. Let us consider
a plate whose temperature has been measured at two points with coordinates u, and u, respectively. The
expression for the temperature distribution with m = 2 contains three unknowns, the determination of which
requires that another equation be added to the two equations (6) set up for points u; and u,, If relation (6a)
for t'(u;) is used as that third equation, then uﬁ = u% /5 the system will be either inconsistent or not deter-
minate enough (if condition t'(u) = (t(uy) —t(wy))/ 2u§ is satisfied). If relation (6a) for t'(u,) is used as that
third equation, however, then the system will have a unique solution for any ratio between u; and u, except
the trivial uy :u, = 1, Thus, a preliminary solvability analysis allows us to choose from Eqs. (6a) those
which together with Eqs. (6) will form a consistent and fully determinate system.

There is also another approach to solving the problem, which circumvents the need for a preliminary
solvability analysis. From expressions (6) and (6a) one can obtain more equations than required for de-
termining all unknowns, With all these equations, the system is overdeterminate and very often inconsis-
tent, In the solution of engineering problems on the basis of test data, we are generally interegted not in
an exact answer but in the best answer possible under given conditions, In this case it is most convenient
to solve the given system of equations by the method of least squares, which will clear any overdeterminacy
or inconsistency, Proper suggestions can be found in [5], for example,

1f the body wall is heated on both sides, then the minimum number of temperature readings is 2 and,
instead of expression (2), we have the following relation which defines the temperature field in terms of
measured temperatures t,(Fo) and ty(Fo) with their derivatives [2]:

(p, Fo) = ZO 1 (Fo) P, (0) -+ § £ (Fo) Py, (p)- (7

The expressions for the radial polynomials Pyn(p) and Pyy(p) for this case were given in [2].

1432



TABLE 1, Calculation of the Heat Transfer Coefficients

Fo Bi/i—k =1,0 Bi/l—k=15,0
0,0313 1,049 4,119
0.,0782 1,219 4,947+
0.1565 1,113 5413
0,313 1,019 4,559
0.782 1,029 4,814
1.565 0,973+ 4,996+

Note. The Bi *values were calculated from the temperature at points

p=0.9, 0,86, 0,2, the other values were calculated from the tempera~
tures at points p = 0,9, 0.8, 0.2,

An analogous procedure can be used for expressing the derivatives t*(Fo) in formula (7) in terms of
temperature readings at internal points pj. These points pj must lie between the hot surface and the nearest
point at which temperature t; or t, is measured. When two surfaces of a body are heated, then, of course,
the number of internal temperature readings necessary for calculating t{(Fo) and t?(Fo) is double the num-~
ber needed in the previous case of one heated surface,

System (7), just as system (6), has a simple solution: this follows from the linear independence of
all functions Pyy(p) and Pyn(p).

In order to reduce the number of measurements at internal points, one may use, in addition to tem-
peratures, also their first derivatives at given points, In that case the system of equations must be first
tested for consistency or it must be solved by the method of least squares,

Thus, we can find relations which will yield the temperature at any point across the wall of a body
— including the heated surface, Expressions 8t/9dp are analogous to (2) or (7), with Py(p) replaced by
(dPn/dp)(p).

The Biot number was calculated for a hollow cylinder with the inside surface insulated, as shown in
Table 1, first from the temperature readings at two internal points and at the insulated surface (k = 0.2),
then according to the exact solution [4] with § = 1 and a zero initial temperature field. The accuracy of
the results is adequate for use in engineering designs,

NOTATION
6 is the ambient temperature;
X, T are the space coordinates;
L is the thickness of a plate;
R is the radius of a surface;
p =r/Rh;
k = Ri/Rn;
u=x/L;
a is the thermal diffusivity;
A is the thermal conductivity;
o is the heat transfer coefficient;
T is the time;
Fo = g7 /1? ig the Fourier number;
Fo = a7/ (Rout—Rjn)*  is the Fourier number;
Bi=aL/2A is the Biot number;
Bi= a(®out—Rin)/ A is the Biot number;
t(Fo) is the n~th order derivative of temperature with respect to Fo,
Subscripts
out denotes the outside surface;
in denotes the inside surface;
i denotes the insulated surface;
h denotes the heated surface.
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